طبقه بندی پلاریمتری-مکانی تصاویر sar با استفاده از تلفیق طبقه بندی کننده های ماشین بردار پشتیبان
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی - دانشکده نقشه برداری
- نویسنده مسعود حبیبی
- استاد راهنما محمود رضا صاحبی یاسر مقصودی
- سال انتشار 1393
چکیده
طبقه بندی پوشش زمین یکی از کاربرد های مهم استفاده از داده های سنجش از دوری است. از میان تصاویر و داده های مورد استفاده در این مورد، داده های پلاریمتری راداری به خاطر امکان استخراج ویژگی های زیاد و متنوع میتوانند برای طبقه بندی گزینه مناسبی باشند. در این تحقیق یک روش عارضه مبنا برای طبقه بندی مناطق شهری با استفاده از داده های پلاریمتری راداری به صورت تلفیق نتایج پیکسل مبنای طبقه بندی svm و قطعات تصویری ارائه می گردد و همچنین برای رسیدن به دقت مناسب طبقه بندی از مجموعه ویژگی های بهینه استفاده شده است. بدین منظور، از روش طبقه بندی کننده های چندگانه svm استفاده شده است. برای نیل به این هدف، معیار دقت کلاس و معیار فاصله حاشیه (margin)svm در طبقه بندی svm جهت انتخاب ویژگی به صورت کلاس مبنا و همچنین انتخاب ویژگی به صورت تصادفی مورد استفاده قرار گرفته است. در تصاویر پلاریمتری به خاطر اسپکل، گاها نتایج طبقه بندی پیکسل مبنا ممکن است راضی کننده نباشد. لذا در این تحقیق از ویژگی های مربوط به فضای تصویر یا قطعات تصویری استفاده شده است. بطور کلی روش ارائه شده سه گام اصلی دارد: انتخاب ویژگی , طبقه بندی پیکسل مبنا و تلفیق نتایج پیکسل مبنا و قطعات تصویری. بهبود دقت طبقه بندی بعنوان دستاورد مهم این تحقیق معرفی شده اند. نتایج عملی نشان میدهد که دقت کلی روش ارائه شده در بهترین حالت طبقه بندی چندگانه عارضه مبنا با استفاده از معیار دقت کلاس در انتخاب ویژگی کلاس مبنا 07/90 درصد و بهترین حالت طبقه بندی چندگانه عارضه مبنا با استفاده از معیار حاشیه svm در انتخاب ویژگی کلاس مبنا 24/89 درصد بدست امد. همچنین برای حالت انتخاب ویژگی تصادفی , دقت کلی طبقه بندی چندگانه عارضه مبنا 75/87 درصد حاصل شد که نشان دهنده افزایش دقت طبقه بندی نسبت به حالت پیکسل مبنا و طبقه بندی کننده ی تک می باشد.
منابع مشابه
طبقه بندی عارضه مبنای تصاویر پلاریمتری سار با استفاده از طبقه بندی کننده های چندگانه ماشین بردار پشتیبان
طبقه بندی پوشش زمین یکی از کاربرد های مهم استفاده از داده های سنجش از دوری است. از میان تصاویر و دادههای مورد استفاده در این مورد، داده های پلاریمتری راداری به خاطر امکان استخراج ویژگی های زیاد و متنوع میتوانند برای طبقه بندی گزینه مناسبی باشند. در این مقاله یک روش عارضه مبنا برای طبقه بندی مناطق شهری با استفاده از داده های پلاریمتری راداری به صورت تلفیق نتایج پیکسل مبنای طبقه بندی svm و قطعات...
متن کاملبهینه سازی طبقه بندی کننده ی ماشین بردار پشتیبان با استفاده از آلگوریتم ژنتیک به منظور طبقه بندی تصاویر پلاریمتریک راداری
طبقه بندی تصاویر ماهواره ای یکی از متداول ترین روشهای استخراج اطلاعات از داده های سنجش از دوری می باشد. با ظهور سنجنده های مایکروویو امکان بهره برداری از اطلاعاتی متمایز از اطلاعات قابل استخراج از سنجنده های نوری فراهم آمده است. دلیل این امر امکان استفاده از ویژگی های متمایز طیف الکترو مغناطیس در محدوده ی مایکروویو است که توسط سنجنده های راداری قابل برداشت می باشد. در این بین تصاویر پلاریمتریک ...
متن کاملطبقه بندی تصاویر پلاریمتری رادار با روزنه مجازی بر اساس تلفیق طبقه بندی کننده ماشین بردار پشتیبان و میدان های تصادفی مارکوف
تحقیقات اخیر نشان داده است که طبقه بندی تصاویر سنجش ازدور با کمک روش هایی که از اطلاعات مکانی در کنار اطلاعات طیفی استفاده می کند، نسبت به روش های مبتنی بر فقط اطلاعات طیفی، دقیق تر می باشد. اگرچه طبقه بندی به روش ماشین بردار پشتیبان دارای نتایج دقیق در بیشتر تصاویر سنجش ازدور می باشد ولی این طبقه بندی کننده ذاتا بر مبنای فقط اطلاعات تک پیکسل عمل می کند، که این یک محدودیت برای استفاده از آن می ...
متن کاملارائه یک روش جدید برای طبقه بندی تصاویر پلاریمتری رادار با روزنه مجازی براساس تلفیق ماشین بردار پشتیبان و میدان های تصادفی مارکوف
در این مقاله یک روش نوین طبقهبندی متنی به منظور طبقهبندی تصاویر پلاریمتری رادار با روزنه مجازی ارائه شده است. روش پیشنهادی با تلفیق ماشین بردار پشتیبان (SVM) و طبقهبندیکننده ویشارت عمل میکند. بدین ترتیب این روش از مزایای هر دو نوع روشهای پارامتریک و غیر پارامتریک بهره میبرد. در این روش، ابتدا تابع انرژی اولیه میدانهای تصادفی مارکوف (MRF) در یک همسایگی از هر پیکسل محاسبه میگردد. سپس با ...
متن کاملطبقه بندی تصاویر ابرطیفی با استفاده از ماشین بردار پشتیبان
در این تحقیق به پیاده سازی و ارزیابی الگوریتم ماشین های بردار پشتیبان در تصاویر ابرطیفی پرداخته شده است. در طبقه بندی تصاویر ابرطیفی به علت ابعاد زیاد، کم بودن نمونه های آموزشی، تغییرات مکانی امضای طیفی، وجود نویز دارای چالش هایی هستیم. با توجه به مشکلات مطرح شده در طبقه بندی تصاویر ابرطیفی نیاز به روش هایی می باشد که به راحتی با ابعاد بالای داده های ورودی کار کرده و همچنین با نمونه های آموزشی ...
15 صفحه اولطبقه بندی متقاضیان تسهیلات اعتباری بانکها با استفاده از تکنیک ماشین بردار پشتیبان
در صنعت بانکداری یکی از موضوعاتی که همواره بایستی مدنظر سیاستگذاران اعتباری قرار دا شته باشد، مبحث مدیریتریسک است. در بین ریسک های مختلفی که بان کها با آن مواجهند, ریسک اعتباری از با اهمیت ترین آن ها است که اززیان های ناشی از ناتوانی یا عدم تمایل مشتری به ایفای تعهدات خویش در برابر بانک حاصل م یگردد.جهت مدیریت و کنترل ریسک مذکور , سیستم های طبقه بندی اعتباری مشتریان ضرورتی انکار ناپذیر است . چن...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی - دانشکده نقشه برداری
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023